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A model is developed to analyse the concentration dependence of the range ~p of the monomer pair 
correlation function. In semidilute solution, three concentration regimes are found for semiflexible 
molecules and the crossover points between the various regimes are predicted in terms of the 
characteristic ratio of the chains in dilute solution and in terms of the Flory interaction parameter Z. A 
simple physical interpretation is given which explains the concentration dependence of ~p based on 
binary contacts initially and then ternary contacts at higher concentration. Temperature-concentration 
diagrams are developed for several common polymer-solvent systems. 
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INTRODUCTION 

The application of scaling methods 1'2 to polymers in 
solution led to a dramatic increase in theoretical and 
experimental interest in polymers in semidilute solution. 
Scaling provides a simple scheme to predict the 
concentration dependence of various observables such as 
radius of gyration of entangled polymers. When couplext 
with the concepts of hydrodynamic screening and 
reptation, dynamic quantities such as chain mobility and 
solution viscosity can also be predicted within numerical 
factors. Scaling methods unfortunately apply only to 
systems which display strong swelling due to excluded 
volume or, stated differently, these methods only apply in 
the asymptotic limit N--,oo, where N is the degree of 
polymerization. 

Following the proclamation of scaling laws, a burst of 
experimental data on static and dynamic properties 
confirmed the validity of scaling predictions 2-6. 
Subsequent experimental investigation, however, 
revealed numerous violations T M  of scaling laws and 
questions concerning the sovereignty of the scaling 
hierarchy inevitably followed 7's'14'~5. Based on dynamic 
data on polystyrene (PS) in various solvents, Schaefer, 
Joanny and Pincus 8 (SJP) traced the breakdown of 
scaling to chain stiffness and demonstrated that most of 
the experimentally accessible solutions are best treated by 
perturbation theory in the mean-field approximation 
consistent with the scheme originally proposed by 
Edwards 16. 

The purpose of the present contribution is to provide a 
conceptually simple yet predictive scheme to analyse the 
properties of semidilute solutions from thermodynamic 
parameters. Although the more simplistic aspects of the 
SJP scheme are avoided, the basic of SJP conclusions 
remain: namely that the mean-field formulation covers 

* This work, performed at Sandia National Laboratories was 
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most experimentally accessible systems. 
Before considering semidilute systems, the single chain 

problem is reviewed. The purpose of this exercise is to 
relate the thermodynamic parameters Z and Z, in Flory 
theory with the corresponding parameters in the so-called 
blob model 6 ofchain statistics. This correlation is done for 
semiflexible molecules where the flexibility is defined by a 
Kuhn segment length 17 or persistence length. 

The analysis of semidilute solutions is based on the 
postulation of various concentration-dependent cross- 
overs which separate regimes where different physical 
models are needed to describe solution properties. 
These crossovers, such as the overlap concentration, are 
now well known except for that describing the onset of 
marginal behaviour (the concentration where scaling 
analysis breaks down). This crossover is traced to chain 
rigidity and is predictable when based on the thermo- 
dynamic properties of the particular polymer-solvent 
system. 

Confirmation of the ideas presented here comes from a 
large body of experimental data on the structure and 
dynamics of polymer systems. In subsequent papers, 
literature data on sedimentation and cooperative 
diffusion is analysed. These data not only demonstrate the 
predicted crossovers but also show that marginal 
behaviour is widespread. In the case of polystyrene (PS) in 
benzene, new data 23 are reported which in conjunction 
with existing results show that scaling exponents 
previously reported for this system result from fitting the 
data in a crossover regime. Static structural data are also 
reported 46 on PS in cyclopentane near the theta point and 
on PS in butanone. These data are consistent with the 
model developed here. 

Elsewhere the model is used to treat reptation-based 
quantities such as viscosity and self-diffusion constant 24. 
In most cases, exponents describing the concentration 
dependence of experimental properties are correctly 
predicted 49. 
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SWELLING OF A SINGLE SEMIFLEXIBLE 
CHAIN 

In the subsequent description of semidilute solutions, the 
degree of chain expansion due to excluded volume plays a 
critical role. In semidilute solution, highly swollen chains 
are best described by scaling theory whereas weakly 
swollen coils are best modelled by a perturbation 
approach 14. In this section the degree of swelling is 
quantified using the so-called blob model 6 in which short 
sequences are presumed to be ideal whereas long 
sequences are fully swollen due to the repulsive inter- 
monomer forces which give rise to the excluded volume 
effect. 

The critical parameter in the blob picture is N ,  the 
temperature-dependent bond index which marks the 
transition from ideal to swollen behaviour. The actual 
chain is viewed as a sequence of blobs or subchains of 
radius ~T each containing N, bonds in an ideal (random 
flight) sequence 

~ = (nN~)l/2a (1) 

where a is the bond length. The parameter n is the number 
of bonds in a persistence length ~7, so the semiflexible 
chain is modelled as a random sequence of rigid rods of 
length b = na. 

The rigidity index n is proportional to the number of 
bonds in a Kuhn segment 4a. The normal Kuhn de- 
finition 4s of the persistence length is not used because 
chain-specific factors related to bond angles would have 
to be introduced. In addition n is defined with respect to 
the radius of gyration in SJP rather than the end-to-end 
distance. As a result of these differences we find 6 
n=(O.83)2n'/6 where n' is the number of bonds per 
equivalent Kuhn segment and the constant 0.83 is specific 
to a tetrahedrally bonded chain. 

For coils whose radius of gyration is small compared to 
¢~, the coil is assumed to be ideal so that the radius of 
gyration is given by the random flight result 

Ro=a(nN)t/2 =a N )  ; N <N~ (2) 

where N is the number of bonds and where the subscript 0 
denotes ideal statistics which are characteristic of chains 
at the so-called 0 temperature. The characteristic ratio C~o 
has been introduced to show that the stiffness n can be 
extracted from tabulated data 47, n=Co~/6.* The 
characteristic ratio is measured at the theta temperature 
where N, = N. 

Chains of sufficiently high molecular weight will deviate 
from (2) due to excluded-volume-induced swelling. The 
radius of gyration of a swollen semiflexible chain can be 
obtained from a generalization of Flory's formula ts 
which becomes a'2° 

Rs=a(1-2Z)l/Snl/SNa/S; R,>~,, N ~ N ,  (3) 

where via 3 = 1 - 2 x is the excluded volume per monomer, 
X being Flory's reduced residual partial-molar free energy 
of dilution 19. This parameter is generally referred to as the 
Flory interaction parameter. 

* The parameter n depends on the particular measure of chain 
dimensions being considered. Equation (2) refers to radius of gyration 
because this length rater than say the end-to-end distance is a reasonable 
length to use to define the overlap concentration ~b* 

In the simple blob picture of polymer coils, the 
transition from (2) to (3) occurs at the critical bond index 
polymerization N, occurring in (1). The parameter N, can 
therefore be found by equating (1) and (3), with the result 

?Z 3 n 3 

N, = (1 - 2Z) 2 ~- (1 - 2Zs)2z 2 (4) 

The right-hand side of (4) presumes that the excluded 
volume parameter (1 -2Z) is linear in the deviation from 
the theta temperature, z = (T-0) /T  The parameter Z, is 
Flory's reduced residual partial-molar entropy of 
dilution 19. 

Equation (4) shows that the parameter N, is directly 
related to Flory's interaction parameter Z so that in the 
highly swollen state the two models (blob and Flory) are 
identical. Near the transition N - - N ,  however, the blob 
model presumes an unrealistically sharp transition 
between ideal and self-avoiding statistics 2t. Since the 
simplicity of the blob picture compensates for the 
unrealistic nature of the transition near N = N ,  the 
treatment below is cast in terms of the blob model. The 
inadequacies of this approach are corrected by realizing 
that 'sharp' transitions predicted are in reality broad and 
smooth changes in statistical properties. 

Various classes of thermodynamic and structural data 
can be used to determine N~. N~ can, for example, be 
extracted from the molecular weight dependence of any 
property which depends on the size of the isolated 
molecule in dilute solution 2s. Table 1 shows N, 
extracted 23 from the molecular weight dependence of the 
diffusion constant D using the expression of Akcasu and 
Han 2s for D within the blob model. 

Given N,, the Flory interaction parameter Z can be 
found using (4) provided the rigidity index n is known. 
This parameter, however, can be obtained from the 
characteristic ratio C~o with the result n = Coo/6 = 1.67 for 
polystyrene (see previous footnote). Column 9 of Table 1 
shows ~ calculated on the basis of N, in column 8 using (4). 
For comparison, X obtained from thermodynamic 
measurements is shown in column 10. The entropic 
contribution Z, to the Flory interaction parameter X is 
shown in column 11 assuming (1-  2X)= (1-  2X,)z. 

There is substantial uncertainty in the value of the para- 
meter X. Thermodynamic measurements are generally 
interpreted using some type of mean-field equation 
coupled with the assumption w=a 6. The mean-field 
assumption is best satisfied at high concentration where 
errors in the choice of the ternary coupling constant (w) 
are most severe. Generally values of X in the table are 
taken from extrapolations into the dilute regime. 

In this section, the basic ideas of the blob model have 
been extended to semiflexible coils and the parameter N, 
was related to Flory's thermodynamic interaction 
parameter Z. Either of these parameters, which are related 
by (4), can be used to characterize chain swelling due to 
excluded volume. Excluded volume coupled with chain 
stiffness characterized by n provides the basis for the 
theory of semidilute solutions outlined below. 

The present treatment differs from the previous analysis 
of SJP s in that SJP assumed that the excluded volume 
effect was attributed entirely to the geometric contact of 
Kuhn segments so that v/a 3= n2z. This assumption leads 
to unrealistic variation of stiffness with solvent quality. In 
the present treatment n is independent of solvent quality 
as it should be. 
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Table I Parameters for  polymer systems 

10 2 
System T (°C) 0 (K) r (Poise) v h L (A) N~. ×D X ×s 

PS in 
CH 32 35 30719 0 0.762 0.491 8.19 - 0.5 0.5 t9 0.219 - 
EA 8 25 22939 0.232 0.426 0.515 8.66 5240 0.49 0.4918 0.4719 0.001 
MEK 33 25 019 1 0.38 0.525 8.78 1312 0.47 0.49419 0.5019 0.002 
BZ 3 20 (100) 19 (0.66) 0.649 0.537 9.73 964 0 A 6  0.4418 0.4118 0.006 
CCI444 22 - - 0.94 0.520 8.29 550 0.45 - - 0.006 
THF 34-36 25 - - 0.46 0.559 10.13 160 0.41 - - 0.01 
TOL37, 3s 20 (160) 19 (0.46) 0.589 0.567 8.03 100 0.39 0.3640 0.39 TM 0.01 
EBZ 25 . . . . . . .  0.4019 0.4219 0.01 

PAMS in 
TOL 43 25 -- -- 0.522 0.534 7.92 386 0.43 0.3641 -- 0.03 
BZ 43 30 - -- 0.561 0.536 7.87 326 0.43 -- -- 0.03 

PDMS in 
TO L 20 . . . . . . .  0.4342 - 0.03 

The parameters L and N~- are extracted f rom light scattering data on the molecular weight dependence of  the dif fusion constant D in di lute 
solution. The parameters are taken f rom Akcasu and Han's 25 expression for  D wi th in the blob model. L is roughly the segment length and 
N~, the crossover bond number. × is the Flory interaction parameter 19 obtained f rom thermodynamic measurements. XD is obtained f rom 
N~. using (4). ~ is the volume fract ion for  the onset of  marginal behaviour calculated by (13). "O, 8, r are the viscosity, theta temperature and 
reduced temperature, v h is the effective hydrodynamic exponent:  v h = --(d log D)/(d log N) .  Xs is Flory's entropy parameter. PAMS is 
poly(c~-methyl styrene) (n = 1 ~4)  and PDMS is poly(d imethyl  siloxane) (n = 1.0). The solvents are cyclohexane (CH), ethyl acetate (EA),  
methyl ethyl ketone (MEK),  benzene (BZ), carbon tetrachlor ide (CCI4), toluene (TOL)and  ethyl benzene (EBZ). 

SEMIDILUTE SOLUTIONS 

Preliminaries 
In dilute solutions, chain statistical propertibs are 

adequately described by the blob model outlined above. 
Although the detailed description of the properties of 
internal sequences is incorrect in the blob model 21'22, it is 
fair to say that the global properties of dilute chains are 
understood both experimentally and theoretically. In 
semidilute solutions, where the chains overlap, the 
situation is less clear with conflicting experimental data 
and lack of consensus on theoretical models 23. The basic 
motivation of this and subsequent papers is to clarify this 
situation and to harmonize existing data within a unified 
model which incorporates both scaling and mean-field 
concepts. The key to success of this approach is the 
recognition that the limits of validity of scaling can be 
defined through the parameters which characterize the 
single chain, namely n, Z and Zs. 

length scales 
Just as in the case of dilute solutions, length parameters 

form the basis for theoretical analysis of various 
measurable factors which characterize chain statistics. In 
dilute solutions, the characteristic lengths are ~ and R, 
which define chain statistics and overall chain dimen- 
sions. Knowledge of the temperature dependence of 
these lengths allows prediction of the salient features of 
the scattering structure factor, the diffusion constant, the 
solution viscosity, etc. In most cases, the persistence 
length b is inconsequential to the functional dependence 
of any of these observable factors. 

In semidilute solution, the over/all size of the constituent 
chains is no longer the significant length scale for most 
static and dynamic solution properties. The pair 
correlation function (or its Fourier inverse, the structure 
factor), for example, no longer depends on R 8 but rather is 
characterized by a smaller N-independent but 
concentration-dependent length, ~p, the range of the pair 

correlation function. The radial dependence of the 
monomer pair correlation falls off faster in semidilute 
solutions (i.e. ¢p < Rs) because the concentration of mono- 
mers a distance r from any given monomer is dominated 
by other chains whenever r exceeds the mean distance ¢2 
between monomer-monomer contacts. For r > ~p = ~2 the 
pair correlation function is dominated by interchain 
processes which occur at random. This situation is 
illustrated in Figure 1 which schematically displays the 
pair correlation function for dilute and semidilute 
solutions. 

In good solvents Cp is the screening length which was 
first introduced by Edwards 16 and is fundamental to all 

L-  

8 
L- 

cl  
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\ 
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Figure 1 The pair correlation funct ion in di lute and semidilute 
solution. For dilute solutions g ( r ) ~ e x p ( -  r/Rgl)2 for r>> Rg 
whereas in semidilute solution g(r)~r- lexp(-r /~p) for r>> ~p. Rg is 
the radius of gyration and ~p is the screening length. At  short 
distances, r , ~ p ,  both funct ion go as r -1 (not shown) .  In this 
example ~p=0.4 Rg 
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theories of semidilute solutions. As the concentration 
increases, intrachain excluded volume interactions are 
screened by the intervening monomers from other chains, 
thus weakening the intrachain interaction. In good 
solvents Cp is the distance beyond which there is no 
excluded volume swelling. 

In theta solvents ~p should not be thought of as a 
screening length because there is no effective two-body 
excluded volume effect to be screened. Nevertheless, 
correlations exist over distances comparable to Ca, the 
mean distance between ternary contacts. Therefore in 
theta solvents Cp -~ C3 retains its meaning as the range of 
the pair correlation function. 

Since correlations in semidilute solution have been 
clearly reviewed by de Gennes 1, the point here is merely to 
justify the derivation of the concentration dependence of 
~p for semidilute solutions. If Cp is known then factors 
such as the collective diffusion constant, the chain friction 
constant and the sedimentation constant follow. 

Concentration crossovers 

Since Cp is the fundamental length for semidilute 
solutions, it is reasonable that changes or crossovers in 
solution properties occur when Cp is comparable to the 
other lengths such as C,, C2 and C3. The first such crossover 
occurs when the chains overlap. Overlap occurs when the 
range of the pair correlation function (R 8 in dilute solu- 
tion) is equal to the mean distance between chains. This 
condition defines the overlap monomer concentration p* 
(monomers/unit volume) and volume fraction qb*= p*a 3, 
which specify the boundary between dilute and semidilute 
solution. For an ideal chain 

3 N a  3 
dp ~ = 4~--~-g = N -1/2n - 3/2 (5) 

For a swollen chain, 

~b~ = ( 3 / 4 n ) N  - ' * / S n  - 3/5(1  - 2 z )  - 3/5 

~- (3/4n)N -4/5n - 3/5(1 - 2Z,)- 3/5r - 3 / 5  (6) 

The crossover which occurs at ~b~ is schematically 
illustrated in Figure 2 which shows the characteristic 
length as a function of volume fraction for a swollen chain. 
Below ~b* this length is just the radius of gyration which, 
apart from perturbative corrections (virial effects), is 
concentration independent. Above ~b*, the characteristic 
length is Cp which is described above and which decreases 
as a function of concentration. 

Other crossover points q~, $ +, Sb, are also shown in 
Figure 2. Although most of the remainder of this paper is 
devoted to defining these crossovers, it is worthwhile to 
preview the situation here. Between ~b* and ~, scaling 
analysis is valid and the concentration dependence of Cp 
can be found by a variety of scaling arguments. Scaling, 
however, is an asymptotic theory which applies strictly to 
an infinite chain. Translated into the present context this 
limitation requires that Cp is much larger than any other 
length in the problem such as C, or b. Scaling fails, 
therefore, when Cp = ~,, the condition which defines q~. 

Above ~ the chains are nearly ideal and the excluded 
volume is screened and very weak. Clearly a perturbation 
approach is indicated 14 and indeed the concentration 
dependence of Cp calculated by linear response theory is in 
agreement with a considerable body of experimental 

data s. The perturbation regime where excluded volume 
effects are weak but not absent is called the marginal 
regime. In this paper we show that the results of the 
perturbation calculation can be obtained on the basis of a 
simple identification of Cp with the distance between 
binary contacts C2 or at higher concentration, the distance 
between ternary contacts C3. This analysis provides both 
conceptual simplicity and also provides the framework 
for identification of the crossover q~ where Cp --- C2 = ~ and 
another crossover ~+ where ternary interactions 
dominate (Cp -~ C3). 

In summary, semidilute solutions are analysed by three 
different approaches under the names good, marginal and 
theta. These regimes are tabulated in Table 2 which lists 
the assumptions concerning chain statistics and monomer 
interaction which apply in each case. In the good solvent, 
semidilute case, for example, the chains are considered 
fully swollen and the monomer interaction is a strong 
two-body effect. In the marginal regime, the chains are 
ideal within pcrturbative corrections and weak two-body 
interactions control the thermodynamics. Finally, in the 
theta case, ideal chains interact via three-body forces. 

At some rather high concentrations the range of the pair 
correlation function becomes comparable to the per- 
sistence length b. At this point, the system is essentially 
close packed and is no longer tractable by theories which 
presume each monomer is surrounded by solvent. The 
crossover Ob defines the upper limit of semidilute 
behaviour. 
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F i g u r e  2 Schematic representation of  the concentrat ion 
dependence of the range of the pair correlation funct ion. The 
sharp breaks are a consequence of the model and are not 
expected in real systems 

Table 2 Chain statistics and monomer interactions for various 
concentrat ion regimes 

Statistics Thermodynamics 
Regime R ~ N u F / R T  = v p  2 + w p  3 + • • • 

Good v = 3/5 w = 0 (2 body) 
Marginal v = 1/2 w = 0 (2 body) 
Theta u = 1/2 v = 0 (3 body) 
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It needs to be re-emphasized that the crossovers 4)*, q~ 
and 4) ÷ do not represent sharp transitions. Indeed all 
experimental data suggest that the transitions are smooth. 
Although the present theory predicts a smooth transition 
at 4) +, a substantially more complex analysis is required 
to treat the other transition regions. Such an analysis lies 
beyond the intent of this paper, the aim of which is to 
understand the properties of semidilute solutions on the 
basis of conceptually simple physical ideas. In fact 
theories exist 26'2 v to treat the transition ~, and although 
these treatments are not entirely consistent with the 
present model, they do show that the transitions are 
within the scope of current theoretical methods. 

The good solvent regime, 4)* <4)< c~ 
In the concentration domain between overlap 4)* and 

marginal behaviour qS the assumptions of scaling 
theory1,2 are valid. Here the concentration dependence of 
~p can be obtained by forcing ¢p to follow power-law 
behaviour above 4)* and to approach Rg correctly when 
4) =4)* (see Figure 2) 

Cp.-. Rg ~ -  (7) 

The exponent x follows from the known N dependence of 
Rg and 4)* (equations (3) and (6)) coupled with the 
requirement that Go is independent of N 

¢, ",~ a4) - 3/4n - 1/4-(1 - 2Z) - 1/4 (8) 

Although only one small-angle scattering measurement 2 
shows the 4)-3/4 power law for Cp, indirect measurements 
based on quasielastic light scattering seem to be 
consistent with this result 23. 

It is instructive to show that Cp in (8) is proportional to 
¢2, the average distance between binary contacts. This 
proportionality follows from the scaling law 1 for osmotic 
pressure re 

re , ~  p 9 / 4  , ~  4)9/4 (9) 

In the semidilute regime re is proportional to the number 
of binary contacts between chains. Since p iN  is the chain 
density, p9/4(N/p) = Np 5/4 is proportional to the number 
of binary contacts/chain. If g2 is the number of monomers 
between interchain contacts, N/g2 is also the number of 
binary contacts/chain, so recalling that p ~ 4), 

o r  

N 
- - ~ N 4 )  5/4 (10) 
92 

92 "~ 4) - 5/4- (11) 

Knowing g2, the distance between contacts follows from 
the Flory law: 

¢2 ~- g a/Sa "~ a4) - 3/4 ..~ Cp ( 1 2 )  

The proportionality ~p~~2 is important because this 
relation is not expected to be dependent on chain swelling 
but only on the fact that binary interactions dominate the 
thermodynamics. The proportionality can therefore be 
exploited above q~ where scaling assumptions are no 
longer valid. 

The marginal regime, q~ < 4) < 4) ÷ 
The breakdown of scaling at some concentration q~ is 

Polymer structure in semidilute solution: D. W. Schaefer 

due to the fact that chains are ideal at small length scales 
in contradiction to (3) which underlies (12). We know from 
the second section that swelling is found only for distances 
greater than ~,: the temperature-dependent length which 
characterizes single chain swelling. The volume fraction q~ 
where (12) fails is found by equating (8) with (1): 

3 ( I -  2Z) (13) 
q~=4n n a 

Since Z is typically about 0.4 and n typically about 2, (13) 
shows that scaling is valid for volume fractions typically 
below 0.01. This fact alone explains most of the confusion 
in the literature concerning the validity of scaling in 
semidilute solutions. 

Above q~, the chains are nearly ideal on all length scales. 
For distances less than ¢, they are ideal because the binary 
contacts are too sparse to lead to significant swelling. For 
lengths greater than ~p, however, ideality is a consequence 
of the screening effect described above. Above q~ binary 
contacts between monomers occur at random so the 
system cannot obtain a more energetically favourable 
situation by chain swelling. The statistics are therefore 
ideal at all length scales greater than b. 

In the situation of random chain statistics it is 
reasonable to treat the weak excluded volume effect as a 
perturbation on an ideal chain. This is basically what 
Edwards 16 and Moore la have done for flexible chains and 
SJP s for semiflexible chains. The concentration 
depehdence of the correlation range ~p, however, can be 
obtained by simple physical argument. Cp should scale 
with the mean distance ~2 between binary contacts so long 
as the system is sufficiently dilute that ternary contacts are 
negligible. In this situation the logic leading to (12) implies 

re,~4)2 (14) 

gp"~ g2  ~ 4) - 1  (15) 

n 3 / 2 a  

¢p"~¢2 (1-2Z)  1/2 4)-1/2 (16) 

The 4) dependence of ~p in (16) follows from the present 
argument although the coefficient requires a full 
perturbation treatment and is inferred from a straight- 
forward extension of SJP's calculation s. 

Expressions (15) and (16) are expected to apply between 
q~ and the concentration 4)+ at which ternary 
contributions to the free energy are comparable to two- 
body effects. The region q~< 4) < 4) ÷ is called the marginal 
regime, denoting behaviour intermediate between a good 
solvent where scaling applies and the theta regime where 
the effective two-body interaction vanishes. In the original 
formulation of semidilute solutions by the French 
school 2, the marginal regime was not found and a direct 
transition from good solvent to theta behaviour was 
predicted (i.e. q~=4)+). As shown below the absence of a 
marginal regime is a direct consequence of the assumption 
of complete chain flexibility. 

An attempt has been made to treat the marginal regime 
by tinkering with scaling laws 2s'29. Although in some 
cases it is possible to predict reasonable effective con- 
centration exponents assuming direct crossover from 
good to theta behaviour, this approach has little 
experimental or theoretical justification. In addition, 
temperature predictions for ¢p for this model are at 
variance with experimental results 7. 
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The theta regime 

The essential physics of the marginal semidilute regime 
is random chain statistics and weak binary interactions. 
As the monomer volume fraction increases, the first 
assumption is more perfectly satisfied whereas binary 
interactions are eventually dominated by ternary 
contributions. By analogy with the theta point in dilute 
solution, the concentration regime in semidilute solution 
where three-body effects dominate is called the theta 
regime. Indeed; at the theta temperature a direct crossover 
from dilute to semidilute theta behaviour is observed with 
no intervening marginal or good solvent regime. 

The concentration dependence of Cp in the theta regime 
follows from the same argument that led to (12) and (16), 
except that in this case the osmotic pressure and the 
number of ternary contacts between chains scale as 4)3 
and the correlation range Co scales with the mean distance 
C3 between ternary contacts 

~~4)a (17) 

N --,,~N4) 2 (18) 
g3 

a n  2 

Cp" C3 ~ (wa -6)1/2 4) -x (19) 

Once again the coefficients in (19) do not follow from (17) 
and (18) but arise from a straightforward generalization of 
the linear response calculation TM. The parameter w is the 
three-body excluded volume. In Flory theory 19 w = a 6 but 
it is left as a parameter here. 

Expression (19) is expected to apply in all semidilute 
systems where effective three-body effects dominate: at 
the theta point and at high concentration. At the theta 
point (19) will apply above 4)* in (5). In this case the 
concentration dependence of Cp also follows from scaling 
arguments 3°. 

Above the theta temperature a good and/or marginal 
regime lies between the overlap concentration 4)* and the 
concentration 4) ÷ where theta behaviour is expected. The 
crossover 4) + occurs where two-body contributions to Cp 
are exactly equal to three-body contributions. This con- 
centration is found by equating (16) and (19) 

4)+ =naavw -1 ~ 1 --2 Z (20) 

assuming vw- 1 = (1 - 2~)n- 1. Little is known about third 
virial coefficients but for rod-like segments vw-1 should 
scale 45 as n-1. 

In the present model, the transition at 4) ÷ is smooth. 
The complete expression for Cp throughout the marginal 
and theta regime follows from linear response theory as in 
ref. 8: 

n2a 
Cp [n(1-2Z)4)+wa-64)2] 1/2 (21) 

Concentrated solutions 
When the correlation range becomes comparable to the 

persistence length b, no further concentration dependence 
is expected since a rod is always correlated over its length. 
The condition Cp = b = na defines the concentrated regime 
and different crossover concentrations 4)m and 4)0 occur 
depending on whether crossover occurs from the 
marginal or theta regime. From (16) and (19) 

n 
4)= = - -  (22) 1-2Z 

n 
"~ n - 1/2 (23) 4)0 = (wa-6)1/~-  

where w = naa 6 is the assumed third virial coefficient for 
the interaction of rod-like segments. Little is known 
experimentally about concentrated systems and no theory 
exists to treat such systems. 

T-C DIAGRAMS 

The various regimes described above can be collected 
graphically through a temperature--concentration 
diagram (T-C diagram) as proposed by Daoud and 
Jannink 31. Such a diagram is shown in Figure 3 for a 
20-unit chain with n = 1.5 and (1 - 2Z) = z. The various lines 
in the figure represent the approximate transition regions 
where the nature of polymer dynamics changes. The line 
z*, for example, separates dilute theta system (region I) 
from dilute swollen systems (region I'). The equation for 
this line follows from (4) with N~ = N. Lines 4)~' and 4)~ 
represent the overlap crossover to semidilute solution and 
follow from (5) and (6) for theta and good solvents. 

As discussed above, the semidilute regime is subdivided 
into good (II), marginal (III) and theta (IV) domains with 
the crossovers q~ and 4) + defined by (13) and (20). Finally, 
the crossover 4)b to the concentrated regime V is 
determined by the condition Cp = na and follows directly 
from (22) and (23). 

A more universal form of the T-C diagram can be 
constructed by use of the parameter (1 -2Z)=va  -3 
instead of temperature on the ordinate. The semilog 
version of such a plot is shown in Figure 4 for N = 3000 
and n =  1.67. This value of n is chosen for PS where 
n = Coo~6 = 1.67. The behaviour of PS in various solvents 
can be predicted from horizontal lines at the appropriate 
values of(1 - 2Z) obtained from Table 1. Lines appropriate 
to PS in several solvents are included. Plots like Figure 4 
should accurately reflect trends with temperature, chain 
rigidity and solvent quality, but caution should be 
exercised in quantitative predictions based on the 
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Figure 3 T-C diagram for a 20-unit  chain with n=1.5.  The 
excluded volume parameter v is assumed to be linear in the 
reduced temperature increment ~= (T-O)/T 
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Figure 4 T-C diagram for PS. The ordinate is the coupling 
constant (1 - 2 X ) =  va-3 and various solvents are represented by 
the horizontal lines. The diagram is drawn for N= 3000, n= 1.67 
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Figure 5 T-C diagram for PS in cyclohexane, This diagram 
assumes Xs=0.2 and that (1 - 2 Z )  is linear in the reduced 
temperature increment ~=(T-8)/T.  N=3000,  n=1.67  

diagrams. After all, the assumptions leading to the 
diagram are crude and although power-law exponents are 
probably accurate, the coefficients required for 
quantitative analysis are largely unknown. 

A considerable body of experimental data has 
accumulated on collective diffusion in semidilute 
solution 23. These data yield the concentration 
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Figure 6 T-C diagram for a very f lexible chain N=3000,  n = l .  
This diagram should be appropriate for PDMS. 1 - 2  x for PDMS 
in toluene is shown as horizontal line 

dependence of ~p and generally exponents of - 1/2 are 
found in concentration regimes near the predicted cross- 
over ~. These results suggest therefore that the ~ line 
should occur at lower concentration than shown in 
Figure 4. 

For systems like PS in cyclohexane (CH) where (1 -2Z) 
is a strong function of temperature, it is possible to 
construct a temperature-concentration diagram as 
shown in Figure 5. This diagram assumes X,= 0.2 and 
1-2X=(1-2Z,)~. The diagram should be reasonably 
accurate for PS in CH and probably is fairly close for PS 
in cyclopentane as well. 

The marginal regime (lid is found only in stiff polymer 
chains. Figure 6 shows the T-C diagram appropriate to a 
highly flexible chain such as PDMS where n = Coo/6 = 1.0. 
For n = 1 region III is very small and it is conceivable that 
the crossover occurs directly from good to theta regime so 
the marginal regime would not be observed. 

The n, N, v, w and ¢ dependences of gp, ~p and R 8 are 
collected in Table 3 for the various temperature- 
concentration regimes. 

CONCLUSIONS 

The model presented in this paper attempts to predict the 
behaviour of polymer systems from dilute solution to 
bulk. On the basis of structural and thermodynamic data, 
the parameters X, X, and n can be found for any polymer 
system. These parameters can then be used to generate 
T-C diagrams similar to Figure 4. 

Table 3 Predicted dependences of/~p, Rg and gp on various parameters 

Regime ~p Rg gp 

I Dilute -- theta -- (Nn) 1/2 - 
I' Dilute - good N31Svll s 
II Semidilute -- good dS-3/4v--1/4n--1/4 N1/2fp--l/Sv -1/8 ¢p~--S/4v--3/4n--3/4 
III Semidilute -- marginal ¢--l/2v--1/2n3/2 Nz/2 ¢--1 v--1 
IV Semidilute -- theta #p~-tw--1/2n2 NI/2 #p--2w-] 
V Concentrated n N1/2 n 

<;b is the volume fraction, n is the number of monomers in a persistence length, v and w are the two- and three-body excluded volume 
parameters. For rod-like monomers v = (1 --2x)a 3 -~ n2a31, and w "" n3a 6 
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